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A numeric algorithm which is suitable for calculating lineshapes
of cross-polarization spectra influenced by isotropic and anisotro-
pic tumbling is proposed. It is based on a description of the
cross-polarization process using single-transition operators com-
bined with rotational diffusion represented by a stationary Markov
operator. A corresponding Fortran program can be implemented
on a regular personal computer. The calculations yield spectral
lineshapes for various mixing times under given cross-polarization
conditions which reflect the characteristics of molecular motion.
Representative results show typical transient oscillations on pow-
der spectra, the dependence of the lineshapes on the degree of
mobility, the effects of sample spinning, the consequence of a given
deviation from the Hartmann—Hahn condition, and the effect of
additional dipolar coupling between | spins. The applicability of
the algorithm is demonstrated on supercooled glycerol as a model
System.  © 2000 Academic Press
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INTRODUCTION

Cross polarization between rare and abundant nuclei

ing during the following free induction decay. The situation
becomes even more complicated when sample spinning
introduced, e.g., in a magic angle spinning (MAS) experimer
(3), or when adiabatic passage through the Hartmann—Ha
condition is applied4, 5. In addition, the characteristic oscil-
lations of the signal amplitude with increasing mixing time are
strongly affected by molecular motion.

In all these cases, for a detailed analysis of the experimen
results, it is necessary to find methods to simulate cros
polarization processes based on given motional and experime
tal parameters. Various analytical approaches have been p
posed for the calculation of the magnetization transfer und
some of the described condition6—«9. They vyield cross-
relaxation rateds" depending on molecular orientation, mo-
tional correlation times, or MAS parameters.

In the following, a numeric algorithm for isolated pairs of
coupled spins (e.g*C—H) is proposed which allows one to
include all these effects simultaneously in order to simulate tf
development of lateral magnetization. It is based on the de
nition of discrete orientations (sites) which are considered t
exchange certain quantities of magnetization per time ur
ldepending on the type and rate of the motion. In additior

developed into a powerful tool in the field of solid-state NMRdliscrete steps in time which in some respect correspond to t

especially when it comes to the observation'i nuclei in
their natural abundance in the presence of protdn®)( A

dwell time of the experiment are introduceld). This approx-
imation accounts for the effect of molecular reorientation

crucial step for the polarization transfer between two types within a wide range of correlation times. Generally, the only
nuclei is a period of thermal contact (“mixing”) between th@reconditions are motional time constants that are at least thr
two spin ensembles for which, in case of the common solidrders of magnitude larger than the reciprocal Larmor fre
state variety, the Hartmann—Hahn conditigH,, = ysH,s quency. However, the finite element approach works best
must be fulfilled (). Experimentally, this is easy to accomplisttorrelation times do not differ from the reciprocal anisotropy o
in the case of static molecules with corresponding wide linesthe local interaction tensor by more than three orders of ma
the frequency spectrum. Rapid molecular reorientation inhibitgude.
the magnetization transfer as it leads to motional averaging ofDuring the mixing period, cross correlation is describe
the dipolar coupling interaction. based on single-transition operatofd); The cross-polariza-
An interesting situation is represented by the case of sldien process for each site is treated individually, being visua
motion with correlation times similar to the time scale of crosged as the rotation of the difference magnetization vector in
polarization. Under this condition, the process of moleculagiven single-transition subspace. In the case of adiabatic pe
reorientation will directly interact with the transfer of magnesage through the Hartmann—Hahn condition or sample spi
tization, leading to a cross-polarization pattern reflecting tméng, the rotation axes and frequencies for each site are tir
characteristic parameters of the motion. Of course, the resuaependent.
ing lineshape is further influenced by partial motional averag- Outside of the cross-polarization sequence, the effect of tl
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local magnetic field is represented by a corresponding precessonance, we may further neglect the term contaihiSg in
sion of site-specific magnetization vectors in #iey’ plane of Egs. [3a] and [3b], sincd, becomes zero.
the rotating frame(0). The effect ofm pulses is accounted for A very elegant approach for the following description of the
by appropriate vector rotations. The effect of magic angl@oss-polarization process has been proposed by Etnsk
spinning is introduced by a resulting time dependence of tkEl). Here, the magnetization transfer is represented in a spe
local magnetic field 12). spanned by four orthogonal single-transition operators:
Model calculations and a practical example are presented to
demonstrate the power and the versatility of the described

algorithm. 129 =302+ S) [4a]
179=3(1:- ) [4b]
THEORETICAL CONSIDERATIONS
129 =3(1"S" +1°S") [4c]
Cross Polarization: Description in a Single-Transition
Operator Basis 139 = —i/2(1*S™ — 1 S*). [4d]

For a system of two coupled spins | and S simultaneousl!

irradiated by corresponding RF fields, the effective Hamiltg/ithin this basis, the corresponding evolution of the magnet
nian in the doubly rotating frame is given by1( 13 zation of | and S spins can be described using the vector mod

It is visualized as the rotation of the difference magnetizatio
vector (Fig. 1) in the three-dimensional subspace of h&)(
transition while the componet-* remains constantl(). In
this subspace, the dipolar coupling between the nuclei (no
merely represented by the term containihgg™ + 1-S*] in

Her = A(Al; + ASS; + 27Dl ;S; + w4l x + ©155¢) [1]

with the resonance offset frequencigsandAs, the precession

frequenciesy,, andw,s corresponding to the RF field strer?gth%qsl [3a] and [3D]) is equivalent to a field along t&® axis
for I and S nuclei, and the dipolar coupling const@ng (in with a corresponding precession frequency
Hz). If this Hamiltonian is transformed into a tilted doubly
rotating frame, where theaxes point along the effective fields 1

w w
(11) (% u 718 27TD|5. [5]

2 W eff Ws eff

e = (A7 + w5) Y2 [2a]
In addition, any difference betwees) . and ws ¢ corresponds
and to a field along thé%* axis (represented by the term [« , +
wserS7] IN EQs. [3a] and [3b]) with a precession frequency

wserr= (A3 + w39 [2b]
Wz = Weff = Wgeff (6]
it becomes
Both influences act simultaneously during the complete peric
A, Ag of double irradiation. They may be replaced by a single effe

Hel i = @il 2 + 0s5erS; + 27Dl S, tive field along an axis with a precession frequencgnd a tilt

angle (Fig. 1) given by 1)

W) eff Ws eff

1 wy o5

2aD1 *S™ +1°S*]  [34]

4 W eff Ws eff o= (0i+ w)l? [7a]

= Wl 7 T WserS; + COS Y COS V2D 6l ;S Wy
1 sing = o [7b]

+ 7 sin 9isin 927D o[ ST+ 1°S], [3b]
w
Cosp = ZZ [7c]
with

wWx
tang = —. 7d
o °= [7d]

W)
tan9, = A and tandg= NG
The resulting time dependence of the coefficieryscy, and
All nonsecular terms of the dipolar coupling have been omit, of the difference magnetization vector (Fig. 1) can b

ted. If we assume that all | spins are irradiated exactly aterived by Euler transformations as
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|23 = C120-5,0)
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FIG. 1. Graphic representation of a cross-polarization process in an isolated I-S spin system as describedlif). Réfe (three axes describe a
three-dimensional subspatg®, 1%, 129, within a system of four orthogonal single-transition operatér3, 1%, 1%, andl . Within this subspace, the
difference magnetization vector evolves according to fields alongtfeaind thel & axis which correspond to the dipolar interaction and the difference betwee
effective frequencies, respectively. TH&® component of the difference vector (indicated by the level of the dotted lines on the left) is directly related to
amount of magnetization actually transferred between the spins | and S. The starting condition (zero polarization of S spins) is,givén hereas complete
magnetization transfer would correspondcto= —1 (see text for details).

Cyx = cos¢[(CxCoS¢ — CzSin @)coswt + ¢ySin wt] but comes in contact with a large number of additional | spin
via I-I dipolar coupling. This necessarily gives rise to a broad
ening of the energy levels which determine the behavior of tf
¢\ = —(CyCcoS @ — C,Sin ¢)sin wt + ¢,CoS wt [8b] |-S system 14). As the rotation parameters of the difference
magnetization vector (Fig. 1) now differs for the various cou
pling situations, the overall vector decomposes into multipl
+ cos [ cysin ¢ + C,C0S @], [8¢c] components within the relevant coordinate system. Therefor

the resulting vector exhibits a characteristic decay which me

with ¢y, ¢, andc, being the coefficients before amg, ci, bg approximated_ by a monoexponential relaxation fu_nctio
andc, being those after the rotation. The observable magn#ith a characteristic time constaily. The observable line
tization for the S spins is obtained by subtracting Zheom- widths of the | signals from a simple spectral lineshape expe

ponent of the difference magnetization vector from the cofinent correspond directly to the contribution of the I-I dipolau
stant termt (1,(0) + S,(0)) (see Fig. 1, left): coupling to the overall relaxation. These values may be dete

mined experimentally on oriented samples, leading to a che

. . acteristic anisotropy of the time constant However, in most
S=32(z2+3) —3(:-S) practical cases, these data are not known and the average t
constanfT, for the relaxation of the difference vector has to be
=2(12(0) + $(0)) = ¢z+3(12(0) = $(0)).  [9] treated as a variable parameter to fit the observable damping
the oscillations. Equations [8a]-[8c] have to be modified ac
Obviously, it is thewy pulse (Fig. 1) which leads to a periodiccordingly to account for the exponential decay. Introducing th

change of the coefficient, (with —1 = ¢, = 1) equivalent variablesc’, c%, andc’, as the new vector components aftet
to an oscillatory transfer of magnetization between | and tRe rotation and the decay, we get

spins according to Eqg. [9]. The efficiency of the transfer
depends on the fulfillment of the Hartmann—Hahn condition,

+ sin ¢ cySin ¢ + c,cos @] [8a]

c, = —sin ¢[(cxCoS @ — C;Sin p)coswt + ¢ySin wt]

the coupling constant, the RF field strengths, and the resonance c% = cxexp(—t/Ty) [10a]
offfets. Complete transfer is obtained far, = 0 and ¢l = clexp(—t/Ty) [10b]
wxl = 1T.

In most cases, the 1-S spin system does not remain isolated, cy = chrexp(—t/Ty). [10c]
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Consequently, the contact to other spins will lead to additionedjuilibrium population® ., (as after an/2 pulse on a system in
damping of the oscillations and finally t§, = 0 equivalent to thermal equilibrium) or by zero (as typically for the beginning
I,(®) = Sy;(®) = 3[1,(0) + S,(0)] (11). Here and in the of cross polarization). In the following, the magnetization
following, all spin—lattice relaxation in the rotating frame willM(®,, ©®,, ¥, t) is affected by a variety of internal and
be ignored for simplicity. external influences, such as

This description of cross polarization is now integrated into
an algorithm for numeric calculation of NMR experiments
which has been proposed earli@éd( 12. Basically, the devel-
opment of the difference vector is treated just as the develo o
ment of the classical magnetization vector in the rotating (d) Sample spinning, and
frame. The basic idea of the algorithm and the practical method(®) Cross polarization.

of implementation of the cp process will be described in th€yme of these conditions are present throughout the expe

(a) interaction with local fields,
(b) molecular motion,
p_(c) T pulses,

following. ment (typically a, b, and d), and some are limited to certai
time intervals or act at specific points (as is assumed for ¢
Numeric Calculation of NMR Signals Except for cross polarization (e), no interaction with othe

nuclei is taken into account, an assumption which represer

For simulation of NMR results, we focus on the S spins arebmplete heteronuclear decoupling. The effect of the inflL
on the development of their magnetization in #iey’ plane ences a—e on the development\dft) in the numeric simula-
of the rotating frame (except for cp conditions, see below). tion will be discussed separately in the following sections.
order to facilitate the numeric calculation, the Euler angles a4y |nteractions with local fields (chemical shift)Based

®, and W, describing the orientation of the molecule withy, the stochastic Liouville equation, the magnetization vects

respect to the sample system, are segmentekintol v, aMd  for each site in the presence of an orientation-dependent Ha

M. discrete orientations leading to the definition of an overgliyp, operator develops in the rotating frame according to
number oM. = Kinax* Imax © Minax Sites (12). Within each site,

the magnetization is represented by an independent and homo- _
geneous ensemble of spins that can be treated classically. Even ~ M({,, t + At) = M(Q,, Hexdio(Q,)At],  [12]
for very large site numbers, there are generally enough spins in

each site to justify this approximation. The overall COm|0|e&§/here(2n stands for a discrete orientation in space. The or

magnetiz_atiorM (i.e._,the signal_observed_ in the-y’ plane in entation-dependent frequencieg(),) are derived from the
the rotating frame) is then derived by simply adding all CONensor of the local interaction, e.g., the chemical shift aniso

trlbutlonsM(<I>ki G)._, Vo). In_ general, the contributions to th_ero y (CSA) tensoHcs = vhloB, by a set of Euler transfor
overall magnetization are time dependent and therefore glvr%ri

o . tions. Generally, the tensor elements are known in a ma
e okt e e, S o SaehotEre, ot tansor ystem (pinipl 2 sysem). where ll of
P ' 9 r?jiagonal elements are zero:
M(t) consequently becomes

Oxx 0 O
M(t) = M(n.- At) = 3 M(®y, O, ¥, ni- At). [11] o= 0 oy 0| [13]
0 0 Ozz7

klm

Of course, due to these approximations, it is crucial to chooker the cases treated in the following text, this magnetic tens
the intervals in time and orientation small enough in order fystem is chosen to be identical to the diffusion tensor syste
avoid artifacts. For all calculations, it is absolutely necessary¥@lich is determined by the preferred rotation axes of th
check the results for convergence with increasingnd de- molecule (2). This simplification is possible for isotropic
creasingAt. Common settings for these parameters vary bBolecular motion. This given, the tensor in the laborator
tween 10,000 and 500,000 steps in time (for situations closeSistem, which is defined by the orientation of the extern
the minimum of the spin—spin relaxation time and for situatiofgagnetic fieldH,, is obtained by a single transformation:
near the limits of the dynamic range, respectively) as well as
b_etwc_een 1000 and 1,000,000 angu}ar orientations (fc_)r correla- ot = TV (D, O, W) T YD, O, ¥,). [14]
tion times near the fast and slow limit of the dynamic range,
respectively).

The starting valuaM(®,, ©,, ¥, 0) for each site is given The corresponding set of Euler anglég, ©,, V¥, describes
by the particular initial experimental condition, e.g., by théhe common orientatiof),, of molecules which belong to a
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given siten. With the relation between the relevant tensor k(d, — ®,.,) = k(®, — d,_,)
elemento?, and the resonance frequeney

= ! ! 20 ! 20
= 671"‘ + 61, cot W [ ]

1 \/S|n ®|t1 1

(U(Qn) = w(q)k! ®|1 q’m) = woo-gz(q)k! ®|1 \Ifm) [15]

k(O = Oy) = - = 2 [21]
the time evolution of the magnetization vector for each site 67, \sin 6, (46)
may be calculated using Eq. [12]. KW, — W ) =kW, > ¥, )
(b) The effect of molecular motionGenerally, motion
leads to an exchange of magnetization between the sites which 11 1 [22]
are considered to remain fixed in space. For very short time 67, sin® (AW)?
intervalsAt, it is allowed to approximate the continuous ex- @ ® ® ®
change process by discontinuous steli} (9. This converts k< k = '<+1) = k( k = H)
Eq. [12] into Yo = Pinis Vo = Wiy
B 1 ) cot® 1 23]
M(Q,, t + At) = M(Q,, t)expiw(Q,, t)At) 67, " sin® 4(AD)(AV)
+ E [ —Kan-omAIM(Q,, ) expin(€),, t)At) K D = Dy K O = Dy,
n’ Vo = Vi B Y, = VYo,
+ Kan—anAtM(Qy, Dexplio(Q,, HAL],  [16] 1 200t® 1 (24]

67, “sSin® 4(AD)(AV)”
wherekqn-any Stands for the first-order rate constant describ

ing the transfer from the sit@, to site(),,. The rate constants ,taqrated in Eq. [16], these rate constants simulate the effe
depend on the velocity of the exchange induced by the indi¢ 3n)isotropic rotational diffusion oM(Q,, t). In a similar

vidual reorientation process. For the example of anisotroqquanner' any other motional process may be described, whict

rotational diffusion, the motion is characterized by two COMgsghaially straightforward in the case of jump motions. In th
lation timesr; andr,, referring to rotational diffusion along thefollowing, we will treat the case of isotropic rotational diffu-

long axis and the two short axes, respectively. Based on reé%n’ where only one correlation time(with 7 = 7, = 7.) is

tive site population® ., defined as relevant.

(c) The effect ofr pulses. So far, the algorithm describes

Prel(€2n) = P(£,)/Pe(2y) [17a] the development of the magnetization of the S spins in th

. x'—y’ plane. Therefore, and for simplicity, we restrict our

sin 6, [17b] discussion tor pulses and assume that their duration is infin

maiMmax 21+ SIN O, itesimally short. If this is given, the magnetization right after

m pulse at = t,,s.may be derived from the magnetization just
ggfore the pulse according to

Peq(Qn) = Kk

the corresponding diffusion operator can be formulated

(15,16
M(tpulse+ At) = [ein(tpulse)]*el‘Pr [25]
PyPr= o 18
dift el 7 gt [18] where the asterisk denotes the conjugated complex @nd
stands for the phase of the pulse (e 0° for anx pulse).
1 9? 1 9° d° 1 97 For anx pulse or ay pulse, the consequence is merely the
Fy==2 35+ | =35+ cot?® 5+ o = . . ) : ’ S
W67 0% 67, \ 002 ad? " sin® ¥ inversion of the imaginary or the real part of the magnetizatior
cot® 92 5 respectively. For all other phases M(t,ue + At) may be
Y R — - calculated according to Eq. [25].
2sin®a®w+cot®a®). [19] g to Eq. [25]

(d) The effect of sample spinningThe additional motional
process induced by sample spinning requires an additional
If this diffusion tensor is applied to the model of discretef Euler angles. In this case, the single transformation from tt
orientations, it yields a set of first-order rate constants whichagnetic tensor system to the laboratory system as given in E
describe the exchange processes between adjacent sites: [14] has to be replaced by two transformatiofg)(
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oS=T"(d,, 0, ¥V, )o"TYS YD, 0,V,) [26] with 6,52, t) representing the angle between the vector
and the magnetic field for each sifk, at a given time.
and Generally, an initial thermal equilibrium, &2 pulse on the
| spins, and a subsequent mixing period will represent th
starting condition of the cp experiment. Therefore, we assun
thatM(£2,, 0) = 0 (which always refers to the S spins) for all

. ] sites. In the single-transition operator basis in the tilted doub
where the index S denotes a reference frame defined by fBgy(ing frame with all protons exactly on resonance, the initic

geometry of the sample container, e.g., the rotor in a samgigation corresponds to a detectable magnetization given b
spinning experiment. Due to the axial symmetry of the mag-

netic field, the result does not depend on the Euler angle S0 0) =0 [31]
which therefore can be set to zero. The angléescribes the m

orientation of the sample rotation axis versus the magnetic field 12(Qp, 0) = SP(Q,). [32]
(e.g., 54.7° in the case of MAS), while is time dependent
with the frequencyw, of the sample rotation according to

ot =Ta, B, V)oT* Ha, B, v), (27]

The scaling factos may be chosen arbitrarily and is given the
value of 2.0 in the following. The time-dependent observabl
a(t) = ot [28] magnetization of the S spins is then derived according to E
[9]:

With the Euler transformations given above, the site- and

time-dependent Larmor frequencies are derived from the rele- 1,(Q,, 0) + S,(Q,, 0)
vant tensor elements, in the laboratory frame according to S,(Q, t) = 2
(12
_ C2(Q, H[12(Q2p, 0) — S,(Qy, 0)]
@(Qp, 1) = 0o 5 (D, O, Wiy, 1) 2
= wel[coSBoS,] + sinP(w,t)[sin?Bay] S [1- ol 0] 12(Q, 0)
+ cos(w,t)[siN?Bosy] + Sin(w,t)cod w,t) 2
% [SinZB(O'iy-F 0_3)()] + sin(wrt) = [1 - CZ(Qm t)]Peq(Qn)- [33]
X [sin B cosB(ay; + a3y)] + codw,t) The coefficientx, may be replaced by weighted coefficients
X [sin B cosB(as, + o)1} [29] d, which account for the relative contribution of each site tc

the overall magnetization. With, = c,(£,, t)P({,) Eq.

with the elements of° given by Eq. [26]. Introduced into Eq. [33] becomes

[12] for the static case or into Eq. [16] in the case of molecular

motion, these site- and time-dependent Larmor frequencies S(Qn, 1) = Peg( ) — dz(Qy, ). [34]
account for the effect of sample rotation at any given rotation
angleB and rotation frequencw,. The development of the magnetization of the S spins for ea

(e) The effect of cross polarizationin order to simulate Site now is completely determined by the development of th
the influence of the cp condition on the magnetization of the@@rresponding coefficient; ({1, t). From Egs. [31] and [34],
spins, we consider I-S spin pairs with dipolar coupling givelh iS obvious that the starting condition is given by
by a coupling constard s. With this assumption, it is possible
to introduce the description of the cp experiment outlined in the dz(Q,, 0) = PefQ)) [35]
initial section. To begin with, the dipolar coupling constant has

to be determined for every si@, and, in the case of samplefoy 4| sites. With Egs. [8a]—[8c] and accounting for the deca:
spinning, also for any given timee The values for the dipolar f the difference magnetization vector according to Egs. [108,
coupling constant® s(€1,, t) in hertz as needed in Eq. [S] are[1oc], the time dependence of the full set of coefficients in th

given by given algorithm is represented by
1 o

Dl 1 = 5 2% (1 - 3 cosi(@, 1), [30) Bl 180 = &0 U 196a]

'S dy(Q,, t+ At) = di(Q,, 1) [36b]

with r s being the internuclear distance between | and S and d,(Q,, t + At) = d%(Q,, 1), [36¢]
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FIG. 2. Stacked plot of calculated spectral lineshapes obtained under variation of the cross-polarization mixigg Tineevalues fot, vary between 10
ws (front) and 50Qus (back) in steps of 1Q.s. The motional mechanism is represented by isotropic rotational diffusion with a correlation time of 1 ms. All of
parameters for the simulated cross-polarization process are given in the text.

where on time (e.g., due to sample spinning or variable pulse amp
tude) and are calculated according to Egs. [5]-[7]. If all proton
dx(Q,, t) = {cos @[ (dx(2,, t)cos e are irradiated on resonance, the resonance offséecomes
— d,(Q,, t)sin ¢)cog wAt) zero and Egs. [5]-[7] result in

+ dy(Q,, t)sin(wAt)]

+ sin [ dy(Q,, t)sin ¢

+ d (Q,, t)cose]lexp(—At/Ty) [374] =
di(Qp, t) = {—(dx(£y, )cos e

o(Qp 1) = (0k + 032

HwSef(Qnt) mD (2, t)]

1/2
— d,(Q,, t)sin )sin(wAt) + [0y — 0sed Qn, t)]z} [384]
+ dy(Q,, t)codwAt)texp(—At/Ty) [37b]
. wX(Qna t)
d(Qy, 1) = {—sin @[ (dx(Qy, HYCOS sine(@u V) =""0 1)
— dz(Q,, t)sin ¢)cog wAt) ®
1S
+ (@, DsiN(wAD] = s Q) TR0 U gy [380]
+ cos @[ dy(Q,, t)sin ¢ w,(Q,, 1)
T dy(Q, Deosellexp—AtTy). 7 0%V = a1
In the most general case, the anglesand the precession . B 1
frequenciesy depend on the site (due to local fields) as well as = Loy = 05l Qo 1] o(Q, 1) [38c]
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To account for adiabatic passage through the Hartmann—Ha
condition (e.g., by using ramped amplitude pulses) the sp
lock frequencyw,s may depend on time and therefore ente
Egs. [38a] and [38b] and Eq. [2b] as(t).

In the presence of molecular motion, the exchange process
as described in part b lead to an additional time dependence
the coefficients. In this case, in analogy to Eq. [16], their tim¢
evolution is given by

du(Qp, t+ At) = d5(Qp, 1) + X [—KianoamAtdy(Qy, 1)

n

+ Kan —anAtdx(Q,y, 1)] [39a]
dy(Qp, t + A = dY(Qp, 1) + X [—KanoomAtdy(Q,, 1)

n

+ k((ln’%nn)Atdg((Qn’a t)] [39b]
dA(Q,, t + At) = dy(Q,, t) + 2 [ —K@n—omAtdZ(Q,, t)

n

+ Kan—anAtd2(Qy, 1)]. [39¢]

In this manner, the coefficients are calculated step by st¢
during the complete mixing period. At the end of this sequenct
it is the coefficientd, which yields the magnetizatiois,
according to Eq. [34]. This set of magnetization element
S,(Q,, t) determines the starting conditiavi((2,, t) for the
following section of the experiment according to

M(Q,, 1) = — 38 7 S D), [40]

wS,eff(Qm

which accounts for the fact that the cross polarization is d¢
veloping along the axis of the tilted rotating frame which in
most cases deviates from tlké axis of the classical rotating
frame. All contributiondM (), t) are defined as real numbers
as the signal is completely in phase after cross polarizatio
This phase is determined by the phase of the spin lock irradiati
which is assumed to follow the axis of the rotating frame.

MODEL CALCULATIONS

All of the following representative results have been ob
tained considering a common cp experiment (initial mixing
periodt,, followed by a free induction decay of the S spins) or
a simple hypothetical two-spin system which is characterize
by the following data:

FIG. 3. Stacked plots of calculated spectral lineshapes for various mixin
times t., and various tumbling rates. The isotropic rotational diffusion is
characterized by a single correlation time= 7, = 7,: (&) 7 = 1 ms, (b)7 =
0.3 ms, (c)r = 0.1 ms, (d)r = 0.03 ms, and (ey = 0.01 ms. All other
simulation parameters are given in the text.
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FIG. 4. Stacked plots of calculated spectral lineshapes for various mixing tignesder the influence of magic angle spinning at different rates of samp
rotation w,: (&) /27 = 1.5 kHz; (b)w /2w = 2.5 kHz. All other parameters are given in the text.

(@) The chemical shift tensor is axially symmetric with théions due to the I-I dipolar coupling has been neglectiedg
tensor elementsyx = —1500 Hz,o0yy = —1500 Hz, and set to infinity). In all these cases, damping is caused merely |
o2z = 3000 Hz. molecular motions.

(b) The site- and time-dependent dipolar coupling is char-
acterized byD s(2,,, t) = 10 kHz: (1 — 3 co€0,s(Q,, 1)); the All these parameters represent rather basic and straightf
vector rs is considered to be parallel to theaxis of the ward conditions. They are chosen deliberately in order to bett
magnetic tensor system. visualize the expected phenomena. However, the describ

(c) The spin lock frequencies, for both nuclei are set to algorithm is versatile enough to account for any given chemic
100,000 1/s, equivalent to a perfect Hartmann—Hahn matghift tensor, any orientation of the internuclear vector in th
(except for the last example, whete s is 80,000 1/s; see magnetic tensor system, any given deviation from the Har
below). mann—-Hahn condition, and more complex motions such :

(d) The motional mechanism affecting the cp process aadisotropic rotational diffusion or any jump process. In the
the resulting lineshapes is assumed to be an isotropic rotatiofedliowing, spectral lineshapes are calculated under variation
diffusion. the cross-polarization periotl, and represented in stacked

(e) Except for the last example, the damping of the oscillaiots. The value fot, varies between 1fs (front) and 50Qus
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(back) in steps of 1Qus. As mentioned before, no spin—latticea -~ L

relaxation is taken into account at this stage of the simulation. {
The number of angular orientations varies between 2000 and
5000; the development of the magnetization is simulated over
100,000 up to 200,000 time intervals. Under these conditions, -
the calculation of a full set of 50 spectra typically requires 3-15
h on a personal computer. .

Transient Oscillations in a Powder Spectrum

The result of a lineshape calculation based on the data given: "
above and a correlation time of 1 ms for the rotational diffusion \D;
is shown in Fig. 2. All single spectra represent powder patterns *
more or less distorted due to motion and incomplete polariza- 100 -
tion transfer. Especially for short mixing periods, they differ be el
significantly from a corresponding lineshape obtained undgy .-~ e e B
simulation of direct excitation. The spectra show a character-, :
istic amplitude oscillation with., which, in the case of the 90°
orientation of the axially symmetric tensor (neal500 Hz ,
spectral frequency), exhibits an oscillation frequency of ap- :
proximately 5 kHz, and in the case of the 0° orientation (near :
3000 Hz spectral frequency), exhibits an oscillation frequency :
of approximately 10 kHz, corresponding to the given dipolar
coupling constant. In the vicinity of the magic angle (near 0 Hz
spectral frequency), the oscillation frequency is zero. A similar !
dependence of the angular orientation is observed for the initial =~
buildup of the cp spectrum, leading to a characteristic “hole”
near the magic angle fdg, < 100 us. The observed oscilla - .
tions correspond well with early experimental data on an top [yis] g§ = VM2l
oriented sample 1Q8). In the simulation, they are merely _ , o
damped by the effect of motional exchanae. Under experim FIG. 5_. Stacked pI(_)ts of c_alculat(_ed speﬁral_llneshapes for_ various mixin
p y 9 P %Pnestcp influenced by isotropic rotational diffusion & 1 ms) with (a) ideal

Fal conditions, this damping WQUId be increas?d by furthgjifiiment of the Hartmann—Hahn condition and (b) deviation from the Hart
influences, e.g., by the interaction among | spins. A secor@nn-Hahn condition according &, = 100,000 1/s and,s = 80,000 1/s.

Fourier transformation with respect tQ yields a two-dimen All other parameters are given in the text. The intensity axes of both plots a a
sional spectrum with the chemical shift pattern a|ong the ﬁrglare of identical scale to allow direct comparison of spectral amplitudes.
axis and the dipolar coupling pattern along the second axis (not

shown).

300

o _ spectral amplitudes are found for 108 < t., < 200 us. This
Variation of Tumbling Rate is caused by a deviation of the initial angular-dependent ma:

The effect of a variation of the tumbling rate (isotropid'€tization after the cp sequence from the equilibrium angul;
rotational diffusion, correlation times between 1 and 0.01 m@f_plflat'on followed by redistribution due to a more or les:
is shown in Fig. 3. It is basically twofold: first, the lineshape§'icient motional exchange. _
show the expected reduction in linewidth upon an increase ofc€nerally, the changes to single cp spectra and series
the tumbling rate; second, the transient oscillations are strongRECtra under variation df, are very dramatic in a dynamic
affected in terms of their frequency and the damping behavidfindow that is specified by the CSA tensor as well as by th
On an increase of the tumbling velocity, the angular contrib@iPolar interaction. Therefore, an analysis of cp lineshapes f
tions to the oscillation frequency start to average out, finalfyna@mic processes generally yields more information the
leading to a single line which develops exponentially (Fig. 3¢§0rresPonding studies on direct excitation spectra.

At the same time, the development of the overall cp signal |
slowed down, due to the more efficient motional averaging 0
the residual dipolar coupling. The result of a simulated magic angle spinning experimel

Another interesting feature is observed for the zero degri® two spinning rates (1500 and 2500 Hz) is displayed in Fic
orientation of the axially symmetric tensor (3000 Hz on thé. The spectrum for the lower spinning rate (Fig. 4a) exhibit
frequency axis) at medium tumbling rates: small negatiweell-dissolved spinning sidebands at1l500 Hz with signal

fect of Sample Spinning
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FIG. 6. Stacked plots of calculated cp spectra for various mixing times under the influence of additional I-I dipolar coupling. The relevant time cc
T, is set to 100us; all other parameters are identical to those given for Fig. 2.

areas of approximately 0.2 and 0.4 relative to the centerbandcasnpared to a corresponding spectrum for an ideal Hartman
expected according to diagrams by Herzfeld and Bergjéx. ( Hahn match (Fig. 5a) are most significant for the 90° oriente
The left second spinning sideband at 3000 Hz is barely visibleon of the symmetric CSA tensor (at1500 Hz spectral
At the higher spinning rate, the spinning sidebands2500 frequency). First, the maximum amplitude achieved throug
Hz appear even weaker with average relative intensities of 0.6®ss polarization is reduced by approximately 35% (mainl
and 0.12. The transient oscillations of the MAS signals showdaie to an effective rotation anglewhich here is smaller than
complicated pattern and depend on the sample rotation fB8°); second, the oscillation frequency is slightly increase
quency, as the latter determines the modulation of the dipoldue to an increase of the overall rotation frequencygf the
coupling. difference vector). The same effects, to a much smaller extel
A deviation from the magic angle leads to scaled interacti@re detectable for the 0° orientation of the CSA tensor at 30(
tensors and correspondingly to reduced spectral linewidtHg spectral frequency. In this case, the larger offset frequent
under improved signal-to-noise ratios as compared to specapartially compensates for the reduced spin lock frequenc
on static samples. These lineshapes still reflect motional pros. However, the overall changes in lineshape induced &

cesses and may be analyzed accordingB; (8. Hartmann—Hahn mismatch are significant; therefore, in a car
ful analysis, it is crucial to obtain precise knowledge of the
Deviation from the Ideal Hartmann—Hahn Condition matching conditions. Alternatively, one may use ramped an

h|%Iitude pulses and sweep through the Hartmann—Hahn con

Typical changes induced by a given deviation from ttlon such that all angular positions are equally affected
Hartmann—Hahn match are represented in Fig. 5. In both cases 9 P quaty '

(a and b), we assume slow isotropic tumbling motion with _ .
correlation time of 1 ms. The simulated mismatch conditio'eﬁlﬁect of Homonuclear Il Coupling

(Fig. 5b) is given by a spin lock frequency of 100,000 1/s for In order to demonstrate the effect of the dipolar couplin
| spins and 80,000 1/s for S spins. The resulting changestatween the 1-S system and abundant | spins, the first moc
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FIG. 7. Experimental cross-polarization carbon spectra of supercool&€]gtycerol at 180 K. The mixing timé,, is varied between 2 and 196 in steps
of 2 us. Each spectrum is accumulated from eight scans using a standard cp pulse sequence (see text).

calculation of this series (transient oscillation; see Fig. 2) &f the mixing period: initially, the spectra exhibit a distinct shoul-
reproduced with identical parameters except for the time constest in the vicinity of 10 to 12 kHz which decreases and finally
Ty which is set to 100us instead of infinity. The resulting disappears for increasing mixing timgs

spectrum is shown in Fig. 6. As expected, the additional dipolarThe corresponding best fit simulation based on the assumpti
coupling contributes efficiently to the damping of transient oscigf an isotropic rotational diffusion is shown in Fig. 8. The simu:
lations (compare Fig. 2). In practical applications of the algorithmiytion parameters summarized in Table 1 are derived almc
the time constant, serves as a variable parameter which aHOV‘{ﬁdependently from typical features of the experimental spectr
one to fit the experimentally observed oscillation behavior.  ihe elements of the chemical shift tensor in the principal ax
systemaoyy, oy, 07 May be determined from the low-frequency
onset, the position of the central peak of the spectrum, and t

In order to demonstrate the applicability of the simulatioHigh"crequenCy onset, respectively. The typical features of tf

procedure, it is used to reproduce an experimental result orfRgCcta! lineshapes sensitively reflect the correlation tiwithe
model system. Figure 7 shows a stacked ploP6f*H cross- rotanona! dn‘fuspn. The frequency and the Qamplng behaylor(
polarization spectra from supercooled{@]glycerol (Cambridge the transient oscillation allow for the determination of the dipola
Isotope Laboratories, Andover, MA) taken at 180 K under varfoupling parameter,s andT, while the orientation of the C-H
ation of the cross-polarization mixing timg (from 2 to 100us ~Vector may be derived from the dependence of the cross-pol;
in steps of 2us). All *C spectra are obtained at 100.617 MH#zation rate on the position in the powder spectrum. The initic
resonance frequency by accumulating eight scans using a stané{fgation of a distinct shoulder between 10 and 12 kHz indicate
cross-polarization sequence: 2 pulse of 7us duration for thatthe C—H vector for the central carbon in glycerol points alon
protons followed by'H and *C contact pulses with a durationthe x axis of the given principal axis system (see Table 1). Wit
given byt,,. The spectral lineshapes depend strongly on the len@® us, the correlation time for isotropic rotational diffusion of the

REPRESENTATIVE RESULTS
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FIG. 8. Calculated best fit for the experimental results shown in Fig. 7. The simulation is based on an isotropic rotational diffusion with a correlatio
of 80 ws. The full set of simulation parameters is given in Table 1.

glycerol molecules is within the expected range derived from &mg cp, cp-MAS, cp-(off-angle)-MAS, cp under a given
extrapolation of data obtained at higher temperatut8s20. offset from the Hartmann—Hahn condition, and cp using
variable intensity of the contact pulse. Hereby, it allows on

to analyze corresponding cp spectra (or series of cp spec

CONCLUSION under variation of the contact time) for molecular motion:

such as rotational diffusion or jump processes. It may als

The numeric algorithm described is capable of simulatingelp to find optimal parameter settings for cp experiment
spectral lineshapes for a large variety of experiments includa systems with given molecular and structural propertie:

TABLE 1
Chemical shift tensor (kH2)
Simulation Correlation I-I dipolar I-S dipolar Direction cosines of C-H
parameters Oxx Oyy 072 time r damping:Ty coupling:D s vector in PAS
Best fit data 125 7. 3. 80s 50 us 32 kHz X y z
X (1 — 3 coshs) 1 0 0°
Estimated error +1 kHz +20% +20% +10% +20%

# Corresponds to 125 ppm/70 ppm/30 ppm.
® Principal axes system.
¢ C—H vector points along the axis of the PAS.
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