
a

Journal of Magnetic Resonance145,216–229 (2000)
doi:10.1006/jmre.2000.2114, available online at http://www.idealibrary.com on
Calculation of Cross-Polarization Spectra Influenced
by Slow Molecular Tumbling

Christian Mayer

Institut für Physikalische und Theoretische Chemie, Universita¨t Duisburg, 47048 Duisburg, Germany

Received October 5, 1999; revised April 4, 2000
i h
R

s
the
olid

ish
es
ibi

ng

slo
os
ula
ne

th
su
rag

ion
ng is
ent

Hahn
il-

l are
s

ental
r ross-
p imen-
t n pro-
p nder
s -

o-

of
to
e the
defi-
d to
unit

tion,
to the
-

i ions
w nly
p three
o fre-
q st if
c y of
t mag-
n

bed
b -
t ual-
i in a
g pas-
s spin-
n time
d

f the
A numeric algorithm which is suitable for calculating lineshapes
of cross-polarization spectra influenced by isotropic and anisotro-
pic tumbling is proposed. It is based on a description of the
cross-polarization process using single-transition operators com-
bined with rotational diffusion represented by a stationary Markov
operator. A corresponding Fortran program can be implemented
on a regular personal computer. The calculations yield spectral
lineshapes for various mixing times under given cross-polarization
conditions which reflect the characteristics of molecular motion.
Representative results show typical transient oscillations on pow-
der spectra, the dependence of the lineshapes on the degree of
mobility, the effects of sample spinning, the consequence of a given
deviation from the Hartmann–Hahn condition, and the effect of
additional dipolar coupling between I spins. The applicability of
the algorithm is demonstrated on supercooled glycerol as a model
system. © 2000 Academic Press

Key Words: cross polarization; motion; lineshape; simulation;
lgorithm.

INTRODUCTION

Cross polarization between rare and abundant nucle
developed into a powerful tool in the field of solid-state NM
especially when it comes to the observation of13C nuclei in
their natural abundance in the presence of protons (1, 2). A
crucial step for the polarization transfer between two type
nuclei is a period of thermal contact (“mixing”) between
two spin ensembles for which, in case of the common s
state variety, the Hartmann–Hahn conditiong IH 1I 5 gSH 1S

must be fulfilled (1). Experimentally, this is easy to accompl
in the case of static molecules with corresponding wide lin
the frequency spectrum. Rapid molecular reorientation inh
the magnetization transfer as it leads to motional averagi
the dipolar coupling interaction.

An interesting situation is represented by the case of
motion with correlation times similar to the time scale of cr
polarization. Under this condition, the process of molec
reorientation will directly interact with the transfer of mag
tization, leading to a cross-polarization pattern reflecting
characteristic parameters of the motion. Of course, the re
ing lineshape is further influenced by partial motional ave
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ing during the following free induction decay. The situat
becomes even more complicated when sample spinni
introduced, e.g., in a magic angle spinning (MAS) experim
(3), or when adiabatic passage through the Hartmann–
condition is applied (4, 5). In addition, the characteristic osc
ations of the signal amplitude with increasing mixing time
trongly affected by molecular motion.
In all these cases, for a detailed analysis of the experim

esults, it is necessary to find methods to simulate c
olarization processes based on given motional and exper

al parameters. Various analytical approaches have bee
osed for the calculation of the magnetization transfer u
ome of the described conditions (6–9). They yield cross

relaxation ratesTIS
21 depending on molecular orientation, m

tional correlation times, or MAS parameters.
In the following, a numeric algorithm for isolated pairs

coupled spins (e.g.,13C–1H) is proposed which allows one
include all these effects simultaneously in order to simulat
development of lateral magnetization. It is based on the
nition of discrete orientations (sites) which are considere
exchange certain quantities of magnetization per time
depending on the type and rate of the motion. In addi
discrete steps in time which in some respect correspond
dwell time of the experiment are introduced (10). This approx
mation accounts for the effect of molecular reorientat
ithin a wide range of correlation times. Generally, the o
reconditions are motional time constants that are at least
rders of magnitude larger than the reciprocal Larmor
uency. However, the finite element approach works be
orrelation times do not differ from the reciprocal anisotrop
he local interaction tensor by more than three orders of
itude.
During the mixing period, cross correlation is descri

ased on single-transition operators (11). The cross-polariza
ion process for each site is treated individually, being vis
zed as the rotation of the difference magnetization vector
iven single-transition subspace. In the case of adiabatic
age through the Hartmann–Hahn condition or sample
ing, the rotation axes and frequencies for each site are
ependent.
Outside of the cross-polarization sequence, the effect o



ece
f
or
ng
f th

ed
ribe

us
ilto

n
ths

f
bly
ds

mi
o

the

space
s

W neti-
z odel.
I tion
v
t

(now

E
w

s

y

eriod
ffec-

be

217CALCULATION OF CROSS-POLARIZATION SPECTRA
local magnetic field is represented by a corresponding pr
sion of site-specific magnetization vectors in thex9–y9 plane o
the rotating frame (10). The effect ofp pulses is accounted f
by appropriate vector rotations. The effect of magic a
spinning is introduced by a resulting time dependence o
local magnetic field (12).

Model calculations and a practical example are present
demonstrate the power and the versatility of the desc
algorithm.

THEORETICAL CONSIDERATIONS

Cross Polarization: Description in a Single-Transition
Operator Basis

For a system of two coupled spins I and S simultaneo
irradiated by corresponding RF fields, the effective Ham
nian in the doubly rotating frame is given by (11, 13)

H eff 5 \~D II Z 1 DSSZ 1 2pD ISI ZSZ 1 v1II X 1 v1SSX! [1]

with the resonance offset frequenciesD I andDS, the precessio
frequenciesv1I andv1S corresponding to the RF field streng
or I and S nuclei, and the dipolar coupling constantD IS (in
Hz). If this Hamiltonian is transformed into a tilted dou
rotating frame, where thez axes point along the effective fiel
(11)

v I,eff 5 ~D I
2 1 v 1I

2 ! 1/ 2 [2a]

and

vS,eff 5 ~D S
2 1 v 1S

2 ! 1/ 2 [2b]

it becomes

H eff/\ 5 v I,eff I Z 1 vS,effSZ 1
D I

vI,eff

DS

vS,eff
2pD ISI ZSZ

1
1

4

v1I

v I,eff

v1S

vS,eff
2pD IS@I

1S2 1 I 2S1# [3a]

5 v I,eff I Z 1 vS,effSZ 1 cosq IcosqS2pD ISI ZSZ

1
1

4
sin q Isin qS2pD IS@I

1S2 1 I 2S1#, [3b]

with

tan q I 5
v1I

DI
and tanqS 5

v1S

DS
.

All nonsecular terms of the dipolar coupling have been o
ted. If we assume that all I spins are irradiated exactly
s-

le
e

to
d

ly
-

t-
n

resonance, we may further neglect the term containingI ZSZ in
Eqs. [3a] and [3b], sinceD I becomes zero.

A very elegant approach for the following description of
cross-polarization process has been proposed by Ernstet al.
(11). Here, the magnetization transfer is represented in a
panned by four orthogonal single-transition operators:

I Z
~1,4! 5 1

2 ~I Z 1 SZ! [4a]

I Z
~2,3! 5 1

2 ~I Z 2 SZ! [4b]

I X
~2,3! 5 1

2 ~I 1S2 1 I 2S1! [4c]

I Y
~2,3! 5 2i / 2~I 1S2 2 I 2S1!. [4d]

ithin this basis, the corresponding evolution of the mag
ation of I and S spins can be described using the vector m
t is visualized as the rotation of the difference magnetiza
ector (Fig. 1) in the three-dimensional subspace of the (2, 3)
ransition while the componentI Z

(1,4) remains constant (11). In
this subspace, the dipolar coupling between the nuclei
merely represented by the term containing [I 1S2 1 I 2S1] in

qs. [3a] and [3b]) is equivalent to a field along theI X
(2,3) axis

ith a corresponding precession frequency

vX 5
1

2

v1I

vI,eff

v1S

vS,eff
2pD IS. [5]

In addition, any difference betweenv I,eff andvS,eff correspond
to a field along theI Z

(2,3) axis (represented by the term [v I,eff I Z 1
vS,effSZ] in Eqs. [3a] and [3b]) with a precession frequenc

vZ 5 v I,eff 2 vS,eff. [6]

Both influences act simultaneously during the complete p
of double irradiation. They may be replaced by a single e
tive field along an axis with a precession frequencyv and a tilt
anglew (Fig. 1) given by (11)

v 5 ~v X
2 1 v Z

2! 1/ 2 [7a]

sin w 5
vX

v
[7b]

cosw 5
vZ

v
[7c]

tan w 5
vX

vZ
. [7d]

The resulting time dependence of the coefficientscX, cY, and
cZ of the difference magnetization vector (Fig. 1) can
derived by Euler transformations as
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218 CHRISTIAN MAYER
c9X 5 cosw@~cXcosw 2 cZsin w!cosvt 1 cYsin vt#

1 sin w@cXsin w 1 cZcosw# [8a]

c9Y 5 2~cXcosw 2 cZsin w!sin vt 1 cYcosvt [8b]

c9Z 5 2sin w@~cXcosw 2 cZsin w!cosvt 1 cYsin vt#

1 cosw@cXsin w 1 cZcosw#, [8c]

ith cX, cY, andcZ being the coefficients before andc9X, c9Y,
andc9Z being those after the rotation. The observable ma-
tization for the S spins is obtained by subtracting theZ com-
ponent of the difference magnetization vector from the
stant term1

2 (I Z(0) 1 SZ(0)) (see Fig. 1, left):

SZ 5 1
2 ~I Z 1 SZ! 2 1

2 ~I Z 2 SZ!

5 1
2 ~I Z~0! 1 SZ~0!! 2 cZ z 1

2 ~I Z~0! 2 SZ~0!!. [9]

Obviously, it is thevX pulse (Fig. 1) which leads to a period
change of the coefficientcZ (with 21 # cZ # 1) equivalen
o an oscillatory transfer of magnetization between I an
pins according to Eq. [9]. The efficiency of the tran
epends on the fulfillment of the Hartmann–Hahn condi

he coupling constant, the RF field strengths, and the reso
ffsets. Complete transfer is obtained forvZ 5 0 and

vXt 5 p.
In most cases, the I–S spin system does not remain iso

FIG. 1. Graphic representation of a cross-polarization process in
three-dimensional subspaceI X

(2,3), I Y
(2,3), I Z

(2,3), within a system of four orthogo
difference magnetization vector evolves according to fields along theI X

(2,3) and t
effective frequencies, respectively. TheI Z

(2,3) component of the difference v
mount of magnetization actually transferred between the spins I and S.

magnetization transfer would correspond tocZ 5 21 (see text for details).
e

-

S
r
,
ce

ed,

but comes in contact with a large number of additional I s
via I–I dipolar coupling. This necessarily gives rise to a bro
ening of the energy levels which determine the behavior o
I–S system (14). As the rotation parameters of the differe

agnetization vector (Fig. 1) now differs for the various c
ling situations, the overall vector decomposes into mul
omponents within the relevant coordinate system. There
he resulting vector exhibits a characteristic decay which
e approximated by a monoexponential relaxation func
ith a characteristic time constantTd. The observable line-

widths of the I signals from a simple spectral lineshape ex
iment correspond directly to the contribution of the I–I dipo
coupling to the overall relaxation. These values may be d
mined experimentally on oriented samples, leading to a
acteristic anisotropy of the time constantTd. However, in mos
practical cases, these data are not known and the averag
constantTd for the relaxation of the difference vector has to
treated as a variable parameter to fit the observable damp
the oscillations. Equations [8a]–[8c] have to be modified
cordingly to account for the exponential decay. Introducing
variablesc0X, c0Y, andc0Z as the new vector components a
the rotation and the decay, we get

c0X 5 c9Xexp~2t/Td! [10a]

c0Y 5 c9Yexp~2t/Td! [10b]

c0Z 5 c9Zexp~2t/Td!. [10c]

isolated I–S spin system as described in Ref. (11). The three axes describe
l single-transition operatorsI X

(2,3), I Y
(2,3), I Z

(2,3), andI Z
(1,4). Within this subspace, th

Z
(2,3) axis which correspond to the dipolar interaction and the difference be
r (indicated by the level of the dotted lines on the left) is directly relate
starting condition (zero polarization of S spins) is given bycZ 5 1, whereas comple
an
na
heI
ecto
The
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219CALCULATION OF CROSS-POLARIZATION SPECTRA
Consequently, the contact to other spins will lead to additi
damping of the oscillations and finally toc0Z 5 0 equivalent to

Z(`) 5 SZ(`) 5 1
2 [ I Z(0) 1 SZ(0)] (11). Here and in th

following, all spin–lattice relaxation in the rotating frame w
be ignored for simplicity.

This description of cross polarization is now integrated
an algorithm for numeric calculation of NMR experime
which has been proposed earlier (10, 12). Basically, the deve
opment of the difference vector is treated just as the dev
ment of the classical magnetization vector in the rota
frame. The basic idea of the algorithm and the practical me
of implementation of the cp process will be described in
following.

Numeric Calculation of NMR Signals

For simulation of NMR results, we focus on the S spins
on the development of their magnetization in thex9–y9 plane
of the rotating frame (except for cp conditions, see below
order to facilitate the numeric calculation, the Euler angleF,
Q, and C, describing the orientation of the molecule w
respect to the sample system, are segmented intokmax, l max, and
mmax discrete orientations leading to the definition of an ove
number ofnmax 5 kmax z l max z mmax sites (12). Within each site
he magnetization is represented by an independent and h
eneous ensemble of spins that can be treated classically

or very large site numbers, there are generally enough sp
ach site to justify this approximation. The overall comp
agnetizationM (i.e., the signal observed in thex9–y9 plane in

he rotating frame) is then derived by simply adding all c
ributionsM(F k, Q l , Cm). In general, the contributions to t
overall magnetization are time dependent and therefore
as M(F k, Q l , Cm, t). In order to simplify the calculation
nite time stepsDt are introduced. The overall magnetizat
(t) consequently becomes

M~t! 5 M~nt z Dt! 5 O
klm

M~Fk, Q l, Cm, nt z Dt!. [11]

f course, due to these approximations, it is crucial to ch
he intervals in time and orientation small enough in orde
void artifacts. For all calculations, it is absolutely necessa
heck the results for convergence with increasingn and de
reasingDt. Common settings for these parameters vary
ween 10,000 and 500,000 steps in time (for situations clo
he minimum of the spin–spin relaxation time and for situat
ear the limits of the dynamic range, respectively) as we
etween 1000 and 1,000,000 angular orientations (for co

ion times near the fast and slow limit of the dynamic ran
espectively).

The starting valueM(F k, Q l , Cm, 0) for each site is give
by the particular initial experimental condition, e.g., by
al
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equilibrium populationsPeq (as after ap/2 pulse on a system
hermal equilibrium) or by zero (as typically for the beginn
f cross polarization). In the following, the magnetiza
(F k, Q l , Cm, t) is affected by a variety of internal a

external influences, such as

(a) interaction with local fields,
(b) molecular motion,
(c) p pulses,
(d) sample spinning, and
(e) cross polarization.

Some of these conditions are present throughout the e
ment (typically a, b, and d), and some are limited to ce
time intervals or act at specific points (as is assumed fo
Except for cross polarization (e), no interaction with o
nuclei is taken into account, an assumption which repre
complete heteronuclear decoupling. The effect of the i
ences a–e on the development ofM(t) in the numeric simula
tion will be discussed separately in the following sections

(a) Interactions with local fields (chemical shift).Based
on the stochastic Liouville equation, the magnetization ve
for each site in the presence of an orientation-dependent
ilton operator develops in the rotating frame according to

M~Vn, t 1 Dt! 5 M~Vn, t!exp@iv~Vn!Dt#, [12]

whereV n stands for a discrete orientation in space. The-
entation-dependent frequenciesv(V n) are derived from th
tensor of the local interaction, e.g., the chemical shift an
ropy (CSA) tensorHCS 5 g\IsB, by a set of Euler transfo-
mations. Generally, the tensor elements are known in a
netic tensor system (principal axis system), where all
diagonal elements are zero:

s M 5 SsXX 0 0
0 sYY 0
0 0 sZZ

D . [13]

For the cases treated in the following text, this magnetic te
system is chosen to be identical to the diffusion tensor sy
which is determined by the preferred rotation axes of
molecule (12). This simplification is possible for isotrop
molecular motion. This given, the tensor in the labora
system, which is defined by the orientation of the exte
magnetic fieldH 0, is obtained by a single transformation:

s L 5 T ML~Fk, Q l, Cm!s MT ML21~Fk, Q l, Cm!. [14]

The corresponding set of Euler anglesF k, Q l , Cm describe
the common orientationV n of molecules which belong to
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220 CHRISTIAN MAYER
given siten. With the relation between the relevant ten
elementsZZ

S and the resonance frequencyv

v~Vn! 5 v~Fk, Q l, Cm! 5 v0s ZZ
S ~Fk, Q l, Cm! [15]

the time evolution of the magnetization vector for each
may be calculated using Eq. [12].

(b) The effect of molecular motion.Generally, motion
leads to an exchange of magnetization between the sites
are considered to remain fixed in space. For very short
intervalsDt, it is allowed to approximate the continuous
change process by discontinuous steps (10, 12). This convert
Eq. [12] into

M~Vn, t 1 Dt! 5 M~Vn, t!exp~iv~Vn, t!Dt!

1 O
n9

@2k~Vn3Vn9!DtM~Vn, t!exp~iv~Vn, t!Dt!

1 k~Vn93Vn!DtM~Vn9, t!exp~iv~Vn9, t!Dt!#, [16]

herek(Vn3Vn9) stands for the first-order rate constant desc-
ng the transfer from the siteV n to siteV n9. The rate constan
depend on the velocity of the exchange induced by the
vidual reorientation process. For the example of anisotr
rotational diffusion, the motion is characterized by two co
lation timesti andt', referring to rotational diffusion along th
long axis and the two short axes, respectively. Based on
tive site populationsPrel defined as

Prel~Vn! 5 P~Vn!/Peq~Vn! [17a]

Peq~Vn! 5
sin Q l

kmaxmmax ¥ l 9 sin Q l 9
, [17b]

the corresponding diffusion operator can be formulate
(15, 16)

GdifPrel 5
­Prel

­t
[18]

Gdif 5
1

6t i

­ 2

­F 2 1
1

6t'
S ­ 2

­Q 2 1 cot2Q
­ 2

­F 2 1
1

sin2Q

­ 2

C 2

2 2
cot Q

sin Q

­ 2

­F­C
1 cot Q

­

­QD . [19]

If this diffusion tensor is applied to the model of discr
orientations, it yields a set of first-order rate constants w
describe the exchange processes between adjacent sites
r

e

ich
e

-

i-
ic
-

la-

s

h

k~Fk 3 Fk11! 5 k~Fk 3 Fk21!

5 S 1

6t i
1

1

6t'

cot2QD 1

~DF! 2 [20]

k~Q l 3 Q l61! 5
1

6t'

Îsin Q l61

Îsin Q l

1

~DQ! 2 [21]

k~Cm 3 Cm11! 5 k~Cm 3 Cm21!

5
1

6t'

1

sin2Q

1

~DC! 2 [22]

kS Fk 3 Fk11

Cm 3 Cm11
D 5 kS Fk 3 Fk21

Cm 3 Cm21
D

5 2
1

6t'

2
cot Q

sin Q

1

4~DF!~DC!
[23]

kS Fk 3 Fk11

Cm 3 Cm21
D 5 kS Fk 3 Fk21

Cm 3 Cm11
D

5
1

6t'

2
cot Q

sin Q

1

4~DF!~DC!
. [24]

Integrated in Eq. [16], these rate constants simulate the
of (an)isotropic rotational diffusion onM(V n, t). In a similar
manner, any other motional process may be described, wh
especially straightforward in the case of jump motions. In
following, we will treat the case of isotropic rotational dif
sion, where only one correlation timet (with t 5 ti 5 t') is
relevant.

(c) The effect ofp pulses. So far, the algorithm describ
the development of the magnetization of the S spins in
x9–y9 plane. Therefore, and for simplicity, we restrict
discussion top pulses and assume that their duration is in
itesimally short. If this is given, the magnetization right aft
p pulse att 5 t pulse may be derived from the magnetization j
before the pulse according to

M~tpulse1 Dt! 5 @e2iwM~tpulse!#* eiw, [25]

where the asterisk denotes the conjugated complex aw
stands for the phase of the pulse (e.g.,w 5 0° for anx pulse)

or an x pulse or ay pulse, the consequence is merely
nversion of the imaginary or the real part of the magnetiza
espectively. For all other phasesw, M(t pulse 1 Dt) may be

calculated according to Eq. [25].

(d) The effect of sample spinning.The additional motiona
process induced by sample spinning requires an addition
of Euler angles. In this case, the single transformation from
magnetic tensor system to the laboratory system as given
[14] has to be replaced by two transformations (12),
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221CALCULATION OF CROSS-POLARIZATION SPECTRA
s 5 T ~Fk, Q l, Cm!s T (Fk, Ql, Cm) [26]

and

s L 5 T SL~a, b, g!s ST SL21~a, b, g!, [27]

here the index S denotes a reference frame defined b
eometry of the sample container, e.g., the rotor in a sa
pinning experiment. Due to the axial symmetry of the m
etic field, the result does not depend on the Euler angg,

which therefore can be set to zero. The angleb describes th
orientation of the sample rotation axis versus the magnetic
(e.g., 54.7° in the case of MAS), whilea is time dependen
with the frequencyvr of the sample rotation according to

a~t! 5 v r t. [28]

ith the Euler transformations given above, the site-
ime-dependent Larmor frequencies are derived from the
ant tensor elementsZZ

L in the laboratory frame according
(12)

v~Vn, t! 5 v0s ZZ
L ~Fk, Q l, Cm, t!

5 v0$@cos2bs ZZ
S # 1 sin2~v r t!@sin2bs YY

S #

1 cos2~v rt!@sin2bs XX
S # 1 sin~v r t!cos~v r t!

3 @sin2b~s XY
S 1 s YX

S !# 1 sin~v r t!

3 @sin b cosb~s YZ
S 1 s ZY

S !# 1 cos~v r t!

3 @sin b cosb~s XZ
S 1 s ZX

S !#% [29]

ith the elements ofsS given by Eq. [26]. Introduced into E
[12] for the static case or into Eq. [16] in the case of molec
motion, these site- and time-dependent Larmor freque
account for the effect of sample rotation at any given rota
angleb and rotation frequencyvr.

(e) The effect of cross polarization.In order to simulat
the influence of the cp condition on the magnetization of t
spins, we consider I–S spin pairs with dipolar coupling g
by a coupling constantD IS. With this assumption, it is possib
to introduce the description of the cp experiment outlined in
initial section. To begin with, the dipolar coupling constant
to be determined for every siteV n and, in the case of samp
spinning, also for any given timet. The values for the dipola
coupling constantsD IS(V n, t) in hertz as needed in Eq. [5] a
given by

D IS~Vn, t! 5
1

2p

m0g IgS\

4pr IS
3 ~1 2 3 cos2uIS~Vn, t!!, [30]

with r IS being the internuclear distance between I and S
the
le
-

ld

d
le-

r
es
n

S
n

e
s

d

with u IS(V n, t) representing the angle between the vector IS

and the magnetic field for each siteV n at a given timet.
Generally, an initial thermal equilibrium, ap/2 pulse on th

I spins, and a subsequent mixing period will represen
starting condition of the cp experiment. Therefore, we ass
thatM(V n, 0) 5 0 (which always refers to the S spins) for
sites. In the single-transition operator basis in the tilted do
rotating frame with all protons exactly on resonance, the in
situation corresponds to a detectable magnetization give

SZ~Vn, 0! 5 0 [31]

I Z~Vn, 0! 5 sPeq~Vn!. [32]

The scaling factors may be chosen arbitrarily and is given
value of 2.0 in the following. The time-dependent observ
magnetization of the S spins is then derived according to
[9]:

SZ~Vn, t! 5
I Z~Vn, 0! 1 SZ~Vn, 0!

2

2
cZ~Vn, t!@I Z~Vn, 0! 2 SZ~Vn, 0!#

2

5 @1 2 cZ~Vn, t!#
I Z~Vn, 0!

2

5 @1 2 cZ~Vn, t!#Peq~Vn!. [33]

he coefficientscZ may be replaced by weighted coefficie
dZ which account for the relative contribution of each site
the overall magnetization. WithdZ 5 cZ(V n, t) Peq(V n) Eq.
33] becomes

SZ~Vn, t! 5 Peq~Vn! 2 dZ~Vn, t!. [34]

he development of the magnetization of the S spins for
ite now is completely determined by the development o
orresponding coefficientsdZ(V n, t). From Eqs. [31] and [34

it is obvious that the starting condition is given by

dZ~Vn, 0! 5 Peq~Vn! [35]

for all sites. With Eqs. [8a]–[8c] and accounting for the de
of the difference magnetization vector according to Eqs. [1
[10c], the time dependence of the full set of coefficients in
given algorithm is represented by

dx~Vn, t 1 Dt! 5 d9X~Vn, t! [36a]

dy~Vn, t 1 Dt! 5 d9Y~Vn, t! [36b]

dz~Vn, t 1 Dt! 5 d9Z~Vn, t!, [36c]
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where

d9X~Vn, t! 5 $cosw@~dX~Vn, t!cosw

2 dZ~Vn, t!sin w!cos~vDt!

1 dY~Vn, t!sin~vDt!#

1 sin w@dX~Vn, t!sin w

1 dZ~Vn, t!cosw#%exp~2Dt/Td) [37a]

d9Y~Vn, t! 5 $2~dX~Vn, t!cosw

2 dZ~Vn, t!sin w!sin~vDt!

1 dY~Vn, t!cos~vDt!%exp~2Dt/Td! [37b]

d9Z~Vn, t! 5 $2sin w@~dX~Vn, t!cosw

2 dZ~Vn, t!sin w!cos~vDt!

1 dY~Vn, t!sin~vDt!#

1 cosw@dX~Vn, t!sin w

1 dZ~Vn, t!cosw#%exp~2Dt/Td!. [37c]

n the most general case, the anglesw and the precessio
requenciesv depend on the site (due to local fields) as we

FIG. 2. Stacked plot of calculated spectral lineshapes obtained unde
ms (front) and 500ms (back) in steps of 10ms. The motional mechanism is r
parameters for the simulated cross-polarization process are given in th
s

on time (e.g., due to sample spinning or variable pulse am
tude) and are calculated according to Eqs. [5]–[7]. If all pro
are irradiated on resonance, the resonance offsetD I become
zero and Eqs. [5]–[7] result in

v~Vn, t! 5 ~v X
2 1 v Z

2! 1/ 2

5 HF v1S

vS,eff~Vn, t!
pD IS~Vn, t!G 2

1 @v1I 2 vS,eff~Vn, t!# 2J 1/ 2

[38a]

sin w~Vn, t! 5
vX~Vn, t!

v~Vn, t!

5
v1S

vS,eff~Vn, t!
pD IS~Vn, t!

1

v~Vn, t!
[38b]

cosw~Vn, t! 5
vZ~Vn, t!

v~Vn, t!

5 @v1I 2 vS,eff~Vn, t!#
1

v~Vn, t!
. [38c]

ariation of the cross-polarization mixing timet cp. The values fort cp vary between 1
esented by isotropic rotational diffusion with a correlation time of 1 ms. A
xt.
r v
epr
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223CALCULATION OF CROSS-POLARIZATION SPECTRA
To account for adiabatic passage through the Hartmann–
condition (e.g., by using ramped amplitude pulses) the
lock frequencyv1S may depend on time and therefore e
Eqs. [38a] and [38b] and Eq. [2b] asv1S(t).

In the presence of molecular motion, the exchange proc
as described in part b lead to an additional time dependen
the coefficients. In this case, in analogy to Eq. [16], their
evolution is given by

dX~Vn, t 1 Dt! 5 d9X~Vn, t! 1 O
n9

@2k~Vn3Vn9!Dtd9X~Vn, t!

1 k~Vn93Vn!Dtd9X~Vn9, t!# [39a]

dY~Vn, t 1 Dt! 5 d9Y~Vn, t! 1 O
n9

@2k~Vn3Vn9!Dtd9Y~Vn, t!

1 k~Vn93Vn!Dtd9Y~Vn9, t!# [39b]

dZ~Vn, t 1 Dt! 5 d9Z~Vn, t! 1 O
n9

@2k~Vn3Vn9!Dtd9Z~Vn, t!

1 k~Vn93Vn!Dtd9Z~Vn9, t!#. [39c]

In this manner, the coefficients are calculated step by
during the complete mixing period. At the end of this seque
it is the coefficientdz which yields the magnetizationSZ

according to Eq. [34]. This set of magnetization elem
SZ(V n, t) determines the starting conditionM(V n, t) for the
following section of the experiment according to

M~Vn, t! 5
v1S

vS,eff~Vn, t!
SZ~Vn, t!, [40]

which accounts for the fact that the cross polarization is
veloping along thez axis of the tilted rotating frame which
most cases deviates from thex9 axis of the classical rotatin
frame. All contributionsM(V n, t) are defined as real numb
as the signal is completely in phase after cross polariza
This phase is determined by the phase of the spin lock irrad
which is assumed to follow thex9 axis of the rotating frame.

MODEL CALCULATIONS

All of the following representative results have been
tained considering a common cp experiment (initial mix
periodt cp followed by a free induction decay of the S spins)
a simple hypothetical two-spin system which is characte
by the following data:

FIG. 3. Stacked plots of calculated spectral lineshapes for various m
times t cp and various tumbling rates. The isotropic rotational diffusio
haracterized by a single correlation timet 5 ti 5 t': (a) t 5 1 ms, (b)t 5

0.3 ms, (c)t 5 0.1 ms, (d)t 5 0.03 ms, and (e)t 5 0.01 ms. All othe
imulation parameters are given in the text.
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224 CHRISTIAN MAYER
(a) The chemical shift tensor is axially symmetric with
tensor elementssXX 5 21500 Hz,sYY 5 21500 Hz, and
sZZ 5 3000 Hz.

(b) The site- and time-dependent dipolar coupling is c
cterized byD IS(V n, t) 5 10 kHz z (1 2 3 cos2u IS(V n, t)); the

vector r IS is considered to be parallel to thez axis of the
magnetic tensor system.

(c) The spin lock frequenciesv1 for both nuclei are set
100,000 1/s, equivalent to a perfect Hartmann–Hahn m
(except for the last example, wherev1,S is 80,000 1/s; se
below).

(d) The motional mechanism affecting the cp process
the resulting lineshapes is assumed to be an isotropic rota
diffusion.

(e) Except for the last example, the damping of the osc

FIG. 4. Stacked plots of calculated spectral lineshapes for various m
rotationvr: (a) vr/2p 5 1.5 kHz; (b)vr/2p 5 2.5 kHz. All other paramete
r-

ch

d
nal

-

tions due to the I–I dipolar coupling has been neglected (Td is
et to infinity). In all these cases, damping is caused mere
olecular motions.

All these parameters represent rather basic and straig
ard conditions. They are chosen deliberately in order to b
isualize the expected phenomena. However, the desc
lgorithm is versatile enough to account for any given chem
hift tensor, any orientation of the internuclear vector in
agnetic tensor system, any given deviation from the H
ann–Hahn condition, and more complex motions suc
nisotropic rotational diffusion or any jump process. In

ollowing, spectral lineshapes are calculated under variati
he cross-polarization periodt cp and represented in stack
plots. The value fort cp varies between 10ms (front) and 500ms

g timest cp under the influence of magic angle spinning at different rates of sa
are given in the text.
ixin
rs
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225CALCULATION OF CROSS-POLARIZATION SPECTRA
(back) in steps of 10ms. As mentioned before, no spin–latt
relaxation is taken into account at this stage of the simula
The number of angular orientations varies between 2000
5000; the development of the magnetization is simulated
100,000 up to 200,000 time intervals. Under these condit
the calculation of a full set of 50 spectra typically requires 3
h on a personal computer.

Transient Oscillations in a Powder Spectrum

The result of a lineshape calculation based on the data
above and a correlation time of 1 ms for the rotational diffu
is shown in Fig. 2. All single spectra represent powder pat
more or less distorted due to motion and incomplete pola
tion transfer. Especially for short mixing periods, they di
significantly from a corresponding lineshape obtained u
simulation of direct excitation. The spectra show a chara
istic amplitude oscillation witht cp which, in the case of the 9
orientation of the axially symmetric tensor (near21500 Hz
spectral frequency), exhibits an oscillation frequency of
proximately 5 kHz, and in the case of the 0° orientation (
3000 Hz spectral frequency), exhibits an oscillation freque
of approximately 10 kHz, corresponding to the given dip
coupling constant. In the vicinity of the magic angle (near 0
spectral frequency), the oscillation frequency is zero. A sim
dependence of the angular orientation is observed for the
buildup of the cp spectrum, leading to a characteristic “h
near the magic angle fort cp , 100 ms. The observed oscill-
tions correspond well with early experimental data on
oriented sample (13). In the simulation, they are mere

amped by the effect of motional exchange. Under experi
al conditions, this damping would be increased by fur
nfluences, e.g., by the interaction among I spins. A se
ourier transformation with respect tot cp yields a two-dimen-

sional spectrum with the chemical shift pattern along the
axis and the dipolar coupling pattern along the second axis
shown).

Variation of Tumbling Rate

The effect of a variation of the tumbling rate (isotro
rotational diffusion, correlation times between 1 and 0.01
is shown in Fig. 3. It is basically twofold: first, the linesha
show the expected reduction in linewidth upon an increa
the tumbling rate; second, the transient oscillations are stro
affected in terms of their frequency and the damping beha
On an increase of the tumbling velocity, the angular contr
tions to the oscillation frequency start to average out, fin
leading to a single line which develops exponentially (Fig.
At the same time, the development of the overall cp sign
slowed down, due to the more efficient motional averagin
the residual dipolar coupling.

Another interesting feature is observed for the zero de
orientation of the axially symmetric tensor (3000 Hz on
frequency axis) at medium tumbling rates: small nega
n.
nd
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spectral amplitudes are found for 100ms , t cp , 200ms. This
is caused by a deviation of the initial angular-dependent
netization after the cp sequence from the equilibrium ang
population followed by redistribution due to a more or
efficient motional exchange.

Generally, the changes to single cp spectra and seri
spectra under variation oft cp are very dramatic in a dynam
window that is specified by the CSA tensor as well as by
dipolar interaction. Therefore, an analysis of cp lineshape
dynamic processes generally yields more information
corresponding studies on direct excitation spectra.

Effect of Sample Spinning

The result of a simulated magic angle spinning experim
for two spinning rates (1500 and 2500 Hz) is displayed in
4. The spectrum for the lower spinning rate (Fig. 4a) exh
well-dissolved spinning sidebands at61500 Hz with signa

FIG. 5. Stacked plots of calculated spectral lineshapes for various m
timest cp influenced by isotropic rotational diffusion (t 5 1 ms) with (a) idea
fulfillment of the Hartmann–Hahn condition and (b) deviation from the H
mann–Hahn condition according tov1I 5 100,000 1/s andv1S 5 80,000 1/s

ll other parameters are given in the text. The intensity axes of both plots
are of identical scale to allow direct comparison of spectral amplitude
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226 CHRISTIAN MAYER
areas of approximately 0.2 and 0.4 relative to the centerba
expected according to diagrams by Herzfeld and Berger17).

he left second spinning sideband at 3000 Hz is barely vis
t the higher spinning rate, the spinning sidebands at62500
z appear even weaker with average relative intensities of
nd 0.12. The transient oscillations of the MAS signals sh
omplicated pattern and depend on the sample rotation
uency, as the latter determines the modulation of the di
oupling.
A deviation from the magic angle leads to scaled interac

ensors and correspondingly to reduced spectral linew
nder improved signal-to-noise ratios as compared to sp
n static samples. These lineshapes still reflect motiona
esses and may be analyzed accordingly (12, 18).

eviation from the Ideal Hartmann–Hahn Condition

Typical changes induced by a given deviation from
artmann–Hahn match are represented in Fig. 5. In both

a and b), we assume slow isotropic tumbling motion wi
orrelation time of 1 ms. The simulated mismatch cond
Fig. 5b) is given by a spin lock frequency of 100,000 1/s
spins and 80,000 1/s for S spins. The resulting chang

FIG. 6. Stacked plots of calculated cp spectra for various mixing tim
Td is set to 100ms; all other parameters are identical to those given for
as

e.

08
a
e-

lar

n
hs
tra
o-

e
es

a
n
r
as

ompared to a corresponding spectrum for an ideal Hartm
ahn match (Fig. 5a) are most significant for the 90° orie

ion of the symmetric CSA tensor (at21500 Hz spectra
requency). First, the maximum amplitude achieved thro
ross polarization is reduced by approximately 35% (ma
ue to an effective rotation anglew which here is smaller tha

90°); second, the oscillation frequency is slightly increa
(due to an increase of the overall rotation frequencyv of the
difference vector). The same effects, to a much smaller ex
are detectable for the 0° orientation of the CSA tensor at
Hz spectral frequency. In this case, the larger offset frequ
DS partially compensates for the reduced spin lock frequ
v1S. However, the overall changes in lineshape induce
Hartmann–Hahn mismatch are significant; therefore, in a
ful analysis, it is crucial to obtain precise knowledge of
matching conditions. Alternatively, one may use ramped
plitude pulses and sweep through the Hartmann–Hahn c
tion such that all angular positions are equally affected.

Effect of Homonuclear I–I Coupling

In order to demonstrate the effect of the dipolar coup
between the I–S system and abundant I spins, the first m

under the influence of additional I–I dipolar coupling. The relevant tim
. 2.
es
Fig
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227CALCULATION OF CROSS-POLARIZATION SPECTRA
calculation of this series (transient oscillation; see Fig. 2
reproduced with identical parameters except for the time con
Td which is set to 100ms instead of infinity. The resultin
spectrum is shown in Fig. 6. As expected, the additional di
coupling contributes efficiently to the damping of transient o
lations (compare Fig. 2). In practical applications of the algori
the time constantTd serves as a variable parameter which all
one to fit the experimentally observed oscillation behavior.

REPRESENTATIVE RESULTS

In order to demonstrate the applicability of the simula
procedure, it is used to reproduce an experimental result
model system. Figure 7 shows a stacked plot of13C–1H cross
polarization spectra from supercooled [2-13C]glycerol (Cambridg
Isotope Laboratories, Andover, MA) taken at 180 K under v
ation of the cross-polarization mixing timetcp (from 2 to 100ms
n steps of 2ms). All 13C spectra are obtained at 100.617 M
resonance frequency by accumulating eight scans using a st
cross-polarization sequence: ap/2 pulse of 7ms duration fo
protons followed by1H and 13C contact pulses with a durati
given bytcp. The spectral lineshapes depend strongly on the le

FIG. 7. Experimental cross-polarization carbon spectra of supercoole
of 2 ms. Each spectrum is accumulated from eight scans using a stand
is
nt

ar
l-
,

s

a

i-

ard

th

of the mixing period: initially, the spectra exhibit a distinct sho
der in the vicinity of 10 to 12 kHz which decreases and fin
disappears for increasing mixing timestcp.

The corresponding best fit simulation based on the assum
of an isotropic rotational diffusion is shown in Fig. 8. The sim
lation parameters summarized in Table 1 are derived a
independently from typical features of the experimental spe
the elements of the chemical shift tensor in the principal
systemsXX, sYY, sZZ may be determined from the low-frequen
onset, the position of the central peak of the spectrum, an
high-frequency onset, respectively. The typical features o
spectral lineshapes sensitively reflect the correlation timet of the
rotational diffusion. The frequency and the damping behavi
the transient oscillation allow for the determination of the dip
coupling parametersDIS andTd while the orientation of the C–
vector may be derived from the dependence of the cross-
ization rate on the position in the powder spectrum. The in
formation of a distinct shoulder between 10 and 12 kHz indic
that the C–H vector for the central carbon in glycerol points a
thex axis of the given principal axis system (see Table 1). W
80ms, the correlation time for isotropic rotational diffusion of

2-glycerol at 180 K. The mixing timet cp is varied between 2 and 100ms in step
cp pulse sequence (see text).
d [13C]
ard
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228 CHRISTIAN MAYER
glycerol molecules is within the expected range derived from
extrapolation of data obtained at higher temperatures (19, 20).

CONCLUSION

The numeric algorithm described is capable of simula
spectral lineshapes for a large variety of experiments inc

FIG. 8. Calculated best fit for the experimental results shown in Fig.
of 80 ms. The full set of simulation parameters is given in Table 1.
n

g
d-

ing cp, cp-MAS, cp-(off-angle)-MAS, cp under a giv
offset from the Hartmann–Hahn condition, and cp usin
variable intensity of the contact pulse. Hereby, it allows
to analyze corresponding cp spectra (or series of cp sp
under variation of the contact time) for molecular moti
such as rotational diffusion or jump processes. It may
help to find optimal parameter settings for cp experim
on systems with given molecular and structural proper

The simulation is based on an isotropic rotational diffusion with a correl
TABLE 1

Simulation
parameters

Chemical shift tensor (kHz)a

Correlation
time t

I–I dipolar
damping:Td

I–S dipolar
coupling:D IS

Direction cosines of C–H
vector in PASbsXX sYY sZZ

Best fit data 12.5 7. 3. 80ms 50ms 32 kHz
3 (1 2 3 cos2u IS)

x
1

y
0

z
0c

Estimated error 61 kHz 620% 620% 610% 620%

a Corresponds to 125 ppm/70 ppm/30 ppm.
b Principal axes system.
c C–H vector points along thex axis of the PAS.
7.
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